

Philadelphia University Faculty of Science **Department of Basic Sciences and Mathematics Fall semester**, 2020/2021

03:00-04:00 12:10-01:00

03:00 - 04:00

Course syllabus

Course title	General Physics		Course code	0211102	
		Time	Days	Location	Lecturer
Lecture Time	Section (32)	19:10 - 20:00	Sun, Tue, Thu.	Microsoft Teams	Ms. Mariam Al- Qderate
	Section (31)	16:15 - 17:45	Mon., Wed.	Microsoft Teams	Ms. Mariam Al- Qderate

Mariam .F Al Qderate

Sun, Tue., Thu.

Mon., Wed.

MSc. In Applied physics

Faculty of Science (816)

mqderate@philadelphia.edu.jo

+ 962 6 4779000 ext. 2335

Academic Staff Specifics

Name Rank Office number and location Office hours

E-mail address Phone

Course textbook

Physics for Scientists and Engineers
Raymond A. Serway and John W. Jewett
Cengage Learning
9 th Edition.
January 17, 2013
1133954057

Other Education Resources

1	Title	Fundamentals of Physics			
	Author	D. Halliday, R. Resnick and Jearl Walker			
	Publisher	John Wiley and Sons (WIE)			
	Edition	10th edition.			
	Year	August 5, 2013			
	ISBN	1118230728			
-		~			

 2 Title Sears and Zemansky's University Physics With Modern Physics, Author Roger A. Freedman, A. Lewis Ford , Francis Weston Sears , Hugh D. Young Publisher Pearson Pub.
Edition 13th edition.
Year 2011
ISBN 10: 0321762185

Course/ academic calendar

Week	Basic and support material to be covered				
	Chapter 23: Charge and Matter				
1+2	Introduction to electrostatics, Insulators and conductors, definition of				
1+2	average and instantaneous electric current, Coulomb's law, electrical				
	forces with some applications, electric Field: Definition, properties of				
	electric field, electric field lines, electric field of a continuous charge				
	distribution, electric fields and conductors, calculations of the electric				
	field with some applications, motion of a charged particle in a uniform				
	electric field.				
3+4	Chanter 24: Gauss's Law				
-	Electric flux, Gauss's law, applications of Gauss's law to electrostatics.				
	Chapter 25: Electric Potential				
	Basic definition, potential difference between two points and electric				
5+6	potential, potential difference in a uniform and non-uniform electric				
	fields, electric potential energy due to point charges, electric potential				
	due to a continuous charge distribution, equipotential surfaces, obtaining				
	electric filed from electric potential, electrostatic potential energy,				
	electron Volt (eV), and applications to electrostatics.				
	Midterm exam: (To be announced by the dept.)				
	Chapter 26: Capacitance and Dielectrics				
7+8	Definition of capacitance, Determination of capacitance, capacitors				
	networks, energy stored in a capacitor, dielectrics, applications.				
	Chapter 27: Current and Resistance				
9	The electric battery, Electric current, drift velocity, resistance and Ohm's				
	law, resistivity of different conductors, superconductors, electrical				
	energy and power, applications.				
10.11	Chapter 28: Direct current Circuits				
10+11	Electromotive force (EMF), resistors networks, Kirchhoff's laws, series				
	and parallel EMFs, RC circuits, applications.				
	Chapter 29 :Magnetic Field				
	Introduction, definition and properties, particle in a magnetic field,				
12	Motion of a charged particle in a magnetic field, magnetic force on a				
	current carrying conductor, applications of the motion of a charged				
	magnetic field. The Hall effect applications				
	Chapter 30 : Sources of the Magnetic Field				
12+14	The Biot-Savart law, the magnetic force between two parallel				
13+14	conductors. Ampere's law, the magnetic field of a solenoid and a toroid.				
	Gauss's law in magnetism (magnetic flux), applications.				
	Chapter 31: Faraday's Law of Induction				
15	Motional EMF, Lenz's Law, Induced EMF and electric fields,				
	Generators and motors, applications.				
	Chapter 34: Electromagnetic Waves (OPTIONAL)				
16	Ampere's law and displacement current, Maxwell's equations,				
	Electromagnetic waves (EM), Energy in electromagnetic waves,				
	Pointing vector.				
	Final exam: (To be announced by the dept.)				

Allocation of Marks

Assessment	Mark	
Midterm	examination	30
Final	examination	50
Quizzes		20
Total		100